On avoiding odd partial Latin squares and r-multi Latin squares

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On avoiding odd partial Latin squares and r-multi Latin squares

We show that for any positive integer k 4, if R is a (2k − 1)× (2k − 1) partial Latin square, then R is avoidable given that R contains an empty row, thus extending a theorem of Chetwynd and Rhodes. We also present the idea of avoidability in the setting of partial r-multi Latin squares, and give some partial fillings which are avoidable. In particular, we show that ifR contains at most nr/2 sy...

متن کامل

On Even and Odd Latin Squares

Latin squares can be classified as odd or even according to the signs of the permutations given by their rows and columns. In this paper, the behaviour of the parities of a latin square under the action of the isotopy group (permuting rows, columns, and symbols) and the transformation group (interchanging rows, columns, and symbols) is analyzed. A rule is given that shows that the behaviour of ...

متن کامل

Premature partial latin squares

We introduce the notion of premature partial latin squares; these cannot be completed, but if any of the entries is deleted, a completion is possible. We study their spectrum, i.e., the set of integers t such that there exists a premature partial latin square of order n with exactly t nonempty cells.

متن کامل

Multi-latin squares

A multi-latin square of order n and index k is an n×n array of multisets, each of cardinality k, such that each symbol from a fixed set of size n occurs k times in each row and k times in each column. A multi-latin square of index k is also referred to as a k-latin square. A 1-latin square is equivalent to a latin square, so a multi-latin square can be thought of as a generalization of a latin ...

متن کامل

Completion of Partial Latin Squares

In this thesis, the problem of completing partial latin squares is examined. In particular, the completion problem for three primary classes of partial latin squares is investigated. First, the theorem of Marshall Hall regarding completions of latin rectangles is discussed. Secondly, a proof of Evans’ conjecture is presented, which deals with partial latin squares of order n containing at most ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2006

ISSN: 0012-365X

DOI: 10.1016/j.disc.2006.05.028